Docker 快速入门
# Docker 快速入门
# Docker 在容器的基础上,进行了进一步的封装,文件系统,网络互联,进程隔离,极大地简化了容器的创建和维护。使得 Docker 相比虚拟机技术更为轻便、快捷。传统虚拟机技术是虚拟出一套硬件后,在其上运行一个完整操作系统,在该系统上再运行所需应用进程;而容器内的应用进程直接运行于宿主的内核,容器内没有自己的内核,而且也没有进行硬件虚拟。因此容器要比传统虚拟机更为轻便。
一次配置,到处运行。由于开发环境、测试环境、生产环境不一致,导致有些 bug 并未在开发过程中被发现。而
Docker
的镜像提供了除内核外完整的运行时环境,确保了应用运行环境一致性,从而不会再出现 「这段代码在我机器上没问题啊」 这类问题。使用 docker 可以通过定制应用镜像来实现持续集成、持续交付、持续部署(CI/CD)。开发人员可以通过 Dockerfile 来进行镜像构建,并结合 持续集成(Continuous Integration) (open new window) (opens new window)系统进行集成测试,而运维人员则可以直接在生产环境中快速部署该镜像,甚至结合 持续部署(Continuous Delivery/Deployment) (open new window) (opens new window)系统进行自动部署。而且使用 Dockerfile 使镜像构建透明化,不仅仅开发团队可以理解应用运行环境,也方便运维团队理解应用运行所需条件,帮助更好的生产环境中部署该镜像。
由于 Docker 确保了环境一致性,使得应用的迁移更加容易。
Docker
可以在很多平台上运行,无论是物理机、虚拟机、公有云、私有云,甚至是笔记本,其运行结果是一致的。Docker
使用的分层存储以及镜像的技术,使得应用重复部分的复用更为容易,也使得应用的维护更新更加简单,基于基础镜像进一步扩展镜像也变得非常简单。此外,Docker
团队同各个开源项目团队一起维护了一大批高质量的 官方镜像 (open new window) (opens new window),既可以直接在生产环境使用,又可以作为基础进一步定制,大大的降低了应用服务的镜像制作成本。由于容器不需要进行硬件虚拟以及运行完整操作系统等额外开销,
Docker
对系统资源的利用率更高。无论是应用执行速度、内存损耗或者文件存储速度,都要比传统虚拟机技术更高效。因此,相比虚拟机技术,一个相同配置的主机,往往可以运行更多数量的应用。传统的虚拟机技术启动应用服务往往需要数分钟,而Docker
容器应用,由于直接运行于宿主内核,无需启动完整的操作系统,因此可以做到秒级、甚至毫秒级的启动时间。大大的节约了开发、测试、部署的时间。
# Docker 三大概念:镜像(Image) 容器(container) 仓库(Repository)
镜像(Image): 操作系统分为 内核 和 用户空间。对于 Linux
而言,内核启动后,会挂载 root
文件系统为其提供用户空间支持。而 Docker 镜像(Image
),就相当于是一个 root
文件系统。比如官方镜像 ubuntu:18.04
就包含了完整的一套 Ubuntu 18.04 最小系统的 root
文件系统。Docker 镜像 是一个特殊的文件系统,除了提供容器运行时所需的程序、库、资源、配置等文件外,还包含了一些为运行时准备的一些配置参数(如匿名卷、环境变量、用户等)。镜像 不包含 任何动态数据,其内容在构建之后也不会被改变。
容器(container): 镜像(Image
)和容器(Container
)的关系,就像是面向对象程序设计中的 类
和 实例
一样,镜像是静态的定义,容器是镜像运行时的实体。容器可以被创建、启动、停止、删除、暂停等。容器的实质是进程,但与直接在宿主执行的进程不同,容器进程运行于属于自己的独立的 命名空间 (open new window) (opens new window)。
仓库(Repository): 镜像构建完成后,可以很容易的在当前宿主机上运行,但是,如果需要在其它服务器上使用这个镜像,我们就需要一个集中的存储、分发镜像的服务,Docker Registry 就是这样的服务。一个 Docker Registry 中可以包含多个 仓库(Repository
);每个仓库可以包含多个 标签(Tag
);每个标签对应一个镜像。通常,一个仓库会包含同一个软件不同版本的镜像,而标签就常用于对应该软件的各个版本。我们可以通过 <仓库名>:<标签>
的格式来指定具体是这个软件哪个版本的镜像。如果不给出标签,将以 latest
作为默认标签。最常使用的 Registry 公开服务是官方的 Docker Hub (open new window) (opens new window),这也是默认的 Registry,并拥有大量的高质量的 官方镜像 (open new window) (opens new window)。除此以外,还有 Red Hat 的 Quay.io (open new window) (opens new window);Google 的 Google Container Registry (open new window) (opens new window),Kubernetes (open new window) (opens new window)的镜像使用的就是这个服务;代码托管平台 GitHub (open new window) (opens new window)推出的 ghcr.io (open new window) (opens new window)。除了官方的 Docker Registry 外,还有第三方软件实现了 Docker Registry API,甚至提供了用户界面以及一些高级功能。比如,Harbor (open new window) (opens new window)。国内的一些云服务商提供了针对 Docker Hub 的镜像服务(Registry Mirror
),这些镜像服务被称为 加速器。常见的有 阿里云加速器 (open new window) (opens new window)、DaoCloud 加速器 (open new window) (opens new window)等。使用加速器会直接从国内的地址下载 Docker Hub 的镜像,比直接从 Docker Hub 下载速度会提高很多。
# 在之前的介绍中,我们知道镜像是 Docker 的三大组件之一。
# Docker 运行容器前需要本地存在对应的镜像,如果本地不存在该镜像,Docker 会从镜像仓库下载该镜像。
$ docker login
$ docker build -t
$ docker push
$ docker pull [选项] [Docker Registry 地址[:端口号]/]仓库名[:标签]
$ docker pull ubuntu:18.04 上面的命令中没有给出 Docker 镜像仓库地址,因此将会从 Docker Hub (docker.io)获取镜像。而镜像名称是 ubuntu:18.04,因此将会获取官方镜像 library/ubuntu 仓库中标签为 18.04 的镜像。docker pull 命令的输出结果最后一行给出了镜像的完整名称,即: docker.io/library/ubuntu:18.04。
有了镜像后,我们就能够以这个镜像为基础启动并运行一个容器。以上面的 ubuntu:18.04 为例,如果我们打算启动里面的 bash 并且进行交互式操作的话,可以执行下面的命令。 $ docker run -it --rm ubuntu:18.04 bash docker run 就是运行容器的命令,具体格式我们会在 容器 一节进行详细讲解,我们这里简要的说明一下上面用到的参数。 -it:这是两个参数,一个是 -i:交互式操作,一个是 -t 终端。我们这里打算进入 bash 执行一些命令并查看返回结果,因此我们需要交互式终端。 --rm:这个参数是说容器退出后随之将其删除。默认情况下,为了排障需求,退出的容器并不会立即删除,除非手动 docker rm。我们这里只是随便执行个命令,看看结果,不需要排障和保留结果,因此使用 --rm 可以避免浪费空间。 ubuntu:18.04:这是指用 ubuntu:18.04 镜像为基础来启动容器。 bash:放在镜像名后的是 命令,这里我们希望有个交互式 Shell,因此用的是 bash。 进入容器之后,我们可以在 Shell 下操作,执行任何所需的命令。这里,我们执行了 cat /etc/os-release,这是 Linux 常用的查看当前系统版本的命令,从返回的结果可以看到容器内是 Ubuntu 18.04.1 LTS 系统。 最后我们通过 exit 退出了这个容器。
要想列出已经下载下来的镜像,可以使用
docker image ls
命令。$ docker image ls 列表包含了 仓库名、标签、镜像 ID、创建时间 以及 所占用的空间。列表包含了 仓库名、标签、镜像 ID、创建时间 以及 所占用的空间。
如果要删除本地的镜像,可以使用
docker image rm
命令,其格式为:$ docker image rm [选项] <镜像1> [<镜像2> ...]
# 使用 Dockerfile 定制镜像
# 包含FROM
,RUN
, COPY
, ADD
,其实 Dockerfile
功能很强大,提供了十多个指令。
Dockerfile 是一个文本文件,其内包含了一条条的 指令(Instruction),每一条指令构建一层,因此每一条指令的内容,就是描述该层应当如何构建。
# FROM 指定基础镜像
所谓定制镜像,那一定是以一个镜像为基础,在其上进行定制。就像我们之前运行了一个 nginx
镜像的容器,再进行修改一样,基础镜像是必须指定的。而 FROM
就是指定 基础镜像,因此一个 Dockerfile
中 FROM
是必备的指令,并且必须是第一条指令。
在 Docker Hub (open new window) (opens new window)上有非常多的高质量的官方镜像,有可以直接拿来使用的服务类的镜像,如 nginx
(open new window) (opens new window)、redis
(open new window) (opens new window)、mongo
(open new window) (opens new window)、mysql
(open new window) (opens new window)、httpd
(open new window) (opens new window)、php
(open new window) (opens new window)、tomcat
(open new window) (opens new window)等;也有一些方便开发、构建、运行各种语言应用的镜像,如 node
(open new window) (opens new window)、openjdk
(open new window) (opens new window)、python
(open new window) (opens new window)、ruby
(open new window) (opens new window)、golang
(open new window) (opens new window)等。
可以在其中寻找一个最符合我们最终目标的镜像为基础镜像进行定制。
在一个空白目录中,建立一个文本文件,并命名为 Dockerfile
输入:
FROM nginx
RUN echo '<h1>Hello, Docker!</h1>' > /usr/share/nginx/html/index.html
镜像构建上下文(Context)
如果注意,会看到 docker build
命令最后有一个 .
,.
表示当前目录,而 Dockerfile
就在当前目录,因此不少初学者以为这个路径是在指定 Dockerfile
所在路径,这么理解其实是不准确的。如果对应上面的命令格式,你可能会发现,这是在指定 上下文路径。那么什么是上下文呢?
首先我们要理解 docker build
的工作原理。Docker 在运行时分为 Docker 引擎(也就是服务端守护进程)和客户端工具。Docker 的引擎提供了一组 REST API,被称为 Docker Remote API (open new window) (opens new window),而如 docker
命令这样的客户端工具,则是通过这组 API 与 Docker 引擎交互,从而完成各种功能。因此,虽然表面上我们好像是在本机执行各种 docker
功能,但实际上,一切都是使用的远程调用形式在服务端(Docker 引擎)完成。也因为这种 C/S 设计,让我们操作远程服务器的 Docker 引擎变得轻而易举。
当我们进行镜像构建的时候,并非所有定制都会通过 RUN
指令完成,经常会需要将一些本地文件复制进镜像,比如通过 COPY
指令、ADD
指令等。而 docker build
命令构建镜像,其实并非在本地构建,而是在服务端,也就是 Docker 引擎中构建的。那么在这种客户端/服务端的架构中,如何才能让服务端获得本地文件呢?
这就引入了上下文的概念。当构建的时候,用户会指定构建镜像上下文的路径,docker build
命令得知这个路径后,会将路径下的所有内容打包,然后上传给 Docker 引擎。这样 Docker 引擎收到这个上下文包后,展开就会获得构建镜像所需的一切文件。
如果在 Dockerfile
中这么写:
COPY ./package.json /app/
这并不是要复制执行 docker build
命令所在的目录下的 package.json
,也不是复制 Dockerfile
所在目录下的 package.json
,而是复制 上下文(context) 目录下的 package.json
。
因此,COPY
这类指令中的源文件的路径都是相对路径。这也是初学者经常会问的为什么 COPY ../package.json /app
或者 COPY /opt/xxxx /app
无法工作的原因,因为这些路径已经超出了上下文的范围,Docker 引擎无法获得这些位置的文件。如果真的需要那些文件,应该将它们复制到上下文目录中去。
现在就可以理解刚才的命令 docker build -t nginx:v3 .
中的这个 .
,实际上是在指定上下文的目录,docker build
命令会将该目录下的内容打包交给 Docker 引擎以帮助构建镜像。
如果观察 docker build
输出,我们其实已经看到了这个发送上下文的过程:
$ docker build -t nginx:v3 .
# RUN 执行命令
RUN
指令是用来执行命令行命令的。由于命令行的强大能力,RUN
指令在定制镜像时是最常用的指令之一。其格式有两种:
# COPY 复制文件
COPY [--chown=<user>:<group>] <源路径>... <目标路径>
COPY [--chown=<user>:<group>] ["<源路径1>",... "<目标路径>"]
和
RUN
指令一样,也有两种格式,一种类似于命令行,一种类似于函数调用。
COPY
指令将从构建上下文目录中 <源路径>
的文件/目录复制到新的一层的镜像内的 <目标路径>
位置。比如:
COPY package.json /usr/src/app/
<源路径>
可以是多个,甚至可以是通配符,其通配符规则要满足 Go 的 filepath.Match
(open new window) (opens new window)规则,如:
COPY hom* /mydir/COPY hom?.txt /mydir/
<目标路径>
可以是容器内的绝对路径,也可以是相对于工作目录的相对路径(工作目录可以用 WORKDIR
指令来指定)。目标路径不需要事先创建,如果目录不存在会在复制文件前先行创建缺失目录。此外,还需要注意一点,使用 COPY
指令,源文件的各种元数据都会保留。比如读、写、执行权限、文件变更时间等。这个特性对于镜像定制很有用。特别是构建相关文件都在使用 Git 进行管理的时候。
# EXPOSE 声明端口
格式为 EXPOSE <端口1> [<端口2>...]
。
EXPOSE
指令是声明容器运行时提供服务的端口,这只是一个声明,在容器运行时并不会因为这个声明应用就会开启这个端口的服务。在 Dockerfile 中写入这样的声明有两个好处,一个是帮助镜像使用者理解这个镜像服务的守护端口,以方便配置映射;另一个用处则是在运行时使用随机端口映射时,也就是 docker run -P
时,会自动随机映射 EXPOSE
的端口。
要将 EXPOSE
和在运行时使用 -p <宿主端口>:<容器端口>
区分开来。-p
,是映射宿主端口和容器端口,换句话说,就是将容器的对应端口服务公开给外界访问,而 EXPOSE
仅仅是声明容器打算使用什么端口而已,并不会自动在宿主进行端口映射。
# WORKDIR 指定工作目录
格式为 WORKDIR <工作目录路径>
。
使用 WORKDIR
指令可以来指定工作目录(或者称为当前目录),以后各层的当前目录就被改为指定的目录,如该目录不存在,WORKDIR
会帮你建立目录。
之前提到一些初学者常犯的错误是把 Dockerfile
等同于 Shell 脚本来书写,这种错误的理解还可能会导致出现下面这样的错误:
RUN cd /appRUN echo "hello" > world.txt
如果将这个 Dockerfile
进行构建镜像运行后,会发现找不到 /app/world.txt
文件,或者其内容不是 hello
。原因其实很简单,在 Shell 中,连续两行是同一个进程执行环境,因此前一个命令修改的内存状态,会直接影响后一个命令;而在 Dockerfile
中,这两行 RUN
命令的执行环境根本不同,是两个完全不同的容器。这就是对 Dockerfile
构建分层存储的概念不了解所导致的错误。
之前说过每一个 RUN
都是启动一个容器、执行命令、然后提交存储层文件变更。第一层 RUN cd /app
的执行仅仅是当前进程的工作目录变更,一个内存上的变化而已,其结果不会造成任何文件变更。而到第二层的时候,启动的是一个全新的容器,跟第一层的容器更完全没关系,自然不可能继承前一层构建过程中的内存变化。
因此如果需要改变以后各层的工作目录的位置,那么应该使用 WORKDIR
指令。
WORKDIR /appRUN echo "hello" > world.txt
如果你的 WORKDIR
指令使用的相对路径,那么所切换的路径与之前的 WORKDIR
有关:
WORKDIR /aWORKDIR bWORKDIR cRUN pwd
RUN pwd
的工作目录为 /a/b/c
。
# USER 指定当前用户
格式:USER <用户名>[:<用户组>]
USER
指令和 WORKDIR
相似,都是改变环境状态并影响以后的层。WORKDIR
是改变工作目录,USER
则是改变之后层的执行 RUN
, CMD
以及 ENTRYPOINT
这类命令的身份。
注意,USER
只是帮助你切换到指定用户而已,这个用户必须是事先建立好的,否则无法切换。
# ARG 构建参数
格式:ARG <参数名>[=<默认值>]
构建参数和 ENV
的效果一样,都是设置环境变量。所不同的是,ARG
所设置的构建环境的环境变量,在将来容器运行时是不会存在这些环境变量的。但是不要因此就使用 ARG
保存密码之类的信息,因为 docker history
还是可以看到所有值的。
# CMD 容器启动命令
CMD
指令的格式和 RUN
相似,也是两种格式:
shell
格式:CMD <命令>
exec
格式:CMD ["可执行文件", "参数1", "参数2"...]
- 参数列表格式:
CMD ["参数1", "参数2"...]
。在指定了ENTRYPOINT
指令后,用CMD
指定具体的参数。
之前介绍容器的时候曾经说过,Docker 不是虚拟机,容器就是进程。既然是进程,那么在启动容器的时候,需要指定所运行的程序及参数。CMD
指令就是用于指定默认的容器主进程的启动命令的。
在运行时可以指定新的命令来替代镜像设置中的这个默认命令,比如,ubuntu
镜像默认的 CMD
是 /bin/bash
,如果我们直接 docker run -it ubuntu
的话,会直接进入 bash
。我们也可以在运行时指定运行别的命令,如 docker run -it ubuntu cat /etc/os-release
。这就是用 cat /etc/os-release
命令替换了默认的 /bin/bash
命令了,输出了系统版本信息。
在指令格式上,一般推荐使用 exec
格式,这类格式在解析时会被解析为 JSON 数组,因此一定要使用双引号 "
,而不要使用单引号。
如果使用 shell
格式的话,实际的命令会被包装为 sh -c
的参数的形式进行执行。比如:
CMD echo $HOME
在实际执行中,会将其变更为:
CMD [ "sh", "-c", "echo $HOME" ]
这就是为什么我们可以使用环境变量的原因,因为这些环境变量会被 shell 进行解析处理。
提到 CMD
就不得不提容器中应用在前台执行和后台执行的问题。这是初学者常出现的一个混淆。
Docker 不是虚拟机,容器中的应用都应该以前台执行,而不是像虚拟机、物理机里面那样,用 systemd
去启动后台服务,容器内没有后台服务的概念。
一些初学者将 CMD
写为:
CMD service nginx start
然后发现容器执行后就立即退出了。甚至在容器内去使用 systemctl
命令结果却发现根本执行不了。这就是因为没有搞明白前台、后台的概念,没有区分容器和虚拟机的差异,依旧在以传统虚拟机的角度去理解容器。
对于容器而言,其启动程序就是容器应用进程,容器就是为了主进程而存在的,主进程退出,容器就失去了存在的意义,从而退出,其它辅助进程不是它需要关心的东西。
而使用 service nginx start
命令,则是希望 upstart 来以后台守护进程形式启动 nginx
服务。而刚才说了 CMD service nginx start
会被理解为 CMD [ "sh", "-c", "service nginx start"]
,因此主进程实际上是 sh
。那么当 service nginx start
命令结束后,sh
也就结束了,sh
作为主进程退出了,自然就会令容器退出。
正确的做法是直接执行 nginx
可执行文件,并且要求以前台形式运行。比如:
CMD ["nginx", "-g", "daemon off;"]